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Mass transfer across the free surface of a wavy film limited by mass exchange in 
the liquid is investigated in the thin diffusional layer" approximation. 

Heat- and mass-transfer processes with the participation of thin liquid layers are used 
in various instruments of chemical technology, in energetics, cryogenics, metallurgy, and 
other branches. The flow rate of these processes is determined, to a large extent, by the 
flow regime in the film, and, in particular, for laminar films it depends substantially on 
the characteristics of the waves generated in them. This dependence is particularly strong 
if most of the transport resistance is concentrated near the free surface of the film, as 
is the case in the very common processes of physical absorption and desorption of gases by 
liquid films (see, for example, [i-i0]). 

Since the molecular diffusion coefficients of dissolved gases are small, the kinetics 
of sorption or desorption is limited by the diffusion rate in a thin layer, adjacent to the 
free surface of the film, and corresponding to a Peclet number much larger than unity in 
real situations. The latter justifies the use of the well-known thin diffusional layer ap- 
proximation [11-15] in the theoretical analysis of these processes. However, the correspond- 
ing problem of convective diffusion was earlier solved either too crudely, with loss of or 
excess accuracy [11, 12], or additional, quite restrictive assumptions were used in them on 
wave harmonicity [13, 14], in-phase oscillations of the width of the diffusional layer by 
wave pulsations of the film width [13], a continuous growth of the diffusional layer inde- 
pendently of the wave phase [15], etc. 

The known theoretical dependences of this type lead to substantial lowering (in compar- 
ison with experiment) of the parameter values characterizing the intensity of mass exchange. 
Therefore the literature contains models [15-17] in which one assumes eddy formation and 
practically total mixing in saddle-shaped waves: the growth from a saddle point of a diffu- 
sional boundary layer is destroyed till one reaches the following saddle point, where it is 
lowered by the new such layer. The conclusion on eddy formation could follow from the con- 
cept that a change in sign of the longitudinal component of the liquid velocity is possible 
near the saddle point [I]. However, these concepts were verified neither by more accurate 
theoretical analysis (see, for example, [18]), nor by direct measurements of the velocity 
profile in the film [19-21], and were therefore recently criticized in [I0]. It follows 
from the theory suggested below that to derive theoretical dependences in agreement with ex- 
perimental data it is not necessary to make any assumptions concerning eddy mixing in laminar 
films with moderate Reynolds number values. 

To describe the stationary wave flow regime in the film we use the theory of weakly non- 
linear waves [22], according to which the film width h and the longitudinal velocity com- 
ponent v~ at the free surface ~ = h are assumed in the form 

h ---- ho(1 + ~o), vt [,~= h ---- uoF ,  F = (3/2)(1  -k ~), 

e x p  . . . . .  - , , =  i  .oT- , 

rt~.~--2 A m ~ - - 2  

where u0 and h0 are the mean velocity and width 
the dimensionless wave velocity and wave number 

(1) 

of the laminar nonwavy film, and c and k are 
(the size of the wavelength being %= (2~/k)ho). 

Two variants of the theory were considered in [22]: a rigorous flow study by the small 
parameter method, valid for 8Re~<<l (~=h0/~, Re=u0h0/v), and an approximate study, in which 
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TABLE i. Stationary Wave Parameters for Small Reynolds Num- 
bers (the small parameter method): 1-IV, Water and Aqueous 
Glycerine Solutions, Fi ~ = 11.34, 10.94, 7.74, and 3.98; 
the Digits in the Columns of the Table are the Values of k, 
c ,  102q, and ~ , Respectively 

r 
Re 

, f 
,0243 
,9984 
,0038 
,0002 

,0641 
,9382 
,1996 
,0130 

,0982 
,6700 
,0020 
,0931 

II 

,0259 
,9981 
,0043 
,0003 

,0682 
,9304 
,2232 
,0147 

,1040 
,6686 
,0827 
,1053 

III 

~,0478 
2,9925 
3,0135 
1,0008 

~,1216 
2,7998 
3,5982 
1,0475 

~,1687 
2,3314 
1,6256 
1,2966 

I IV 

0,1378 
2,9364 
0,1093 
1,0071 

0,2198 
2,4517 
1,3584 
1,1993 

===/4 

0,0086 
3,0000 
O ,0000 
1,0000 

0,0509 
2,9745 
0,0688 
1,0043 

0,0856 
2,8116 
0,5785 
1,0452 

II 

0,0091 
3,0000 
0,0000 
1,0000 

0,0543 
2,9710 
0,0772 
1,0048 

0,0908 
2,7916 
0,6337 
1,0510 

I l l  

C ,0171 
,9996 

C,O001 
1,oooo 

C ,0980 
,9093 

C,2208 
1,0150 

0,1542 
,5264 

1,t569 
1,1434 

I IV 

0,0487 
2,9959 
0,0007 
1,0000 

0,2273 
2,5961 
0,7148 
1,0787 

the distribution of the longitudinal velocity component over the 
by a self-similar parabolic profile, providing fair results even for eRe>~l. In both cases 
it was assumed that ~<~I, i.e., long waves were considered. 

In the small parameter method we have for the series coeffihients (I), characterizing 
the established wave regime (zRe<< I) : 

(I~o = - -  2q, (])1 = ]//'q', (I)~, = T 2i tg ~ - -  - -  Re k X 
cos ~ 20 

--5---'Reck+24 t g e  + ~-~-Re k + - - c o s e  q' ~F~ =2q" 

--- ~ +  t g c z - -  Re c l / q  
cos = 3 ' 8 ' 

�9 2 ( 9)]} 
= - - + t g = - -  R e  c - -  . 

cos~ 3 8 

film width was approximated 

(2) 

Within the integral relation method (sRe~ ]): 

(D o = 2(1, 23 c)q, ( I )~=V-~,~ ,=[2E, (c - -1)z§  3iWecosa kS]G-tq'  g ~  2-~-cq'3 

1Fx-- ( c - -  1) V'q,  ~ ,  = t2E=(c--l)Z-+-(2E--3)(c - 1 ) +  
(3)  

q- 3 -~ 9 ik tg c~ - -  2E1 + __27cosiWea ksj (c - -  1) G-tq, 

24/We G=(2E+3)(c--l)--6(l+iktga)+2Ez. - - k  3, 
COS 

( ) (~ 0 E=iRe c -- 1___2_25 k, E1 =iRe  c -- ~5 k, E~=~5 iRek. 

Here the Reynolds and film numbers were introduced 

if3 
Re = uo ho , Fi . . . .  9Re 2 We3/cosZ~. (4) 

v p3 ~,~g 

In both cases the indicated coefficients are single-valued functions of k and c, as well 
as of the square q of the main harmonic amplitude of the dimensionless perturbation ~ of the 
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TABLE 2. Stationary Wave Parameters for Moderate Reynolds 
Numbers (the integral relation method): 1-IV, Water, Aque- 
ous Solutions of Glycerine and Oil, Fi ~ = 11.34, 7.74, 
3.98, and 1.79; the Digits in the Columns of the Table are 
the Values of k, c, 10"q, and x, Respectively 

Re 

12 

16 

20 

0,0662 
2,9202 
0,2936 
1,0206 

0,1046 
2,6164 
1,5839 
1,1165 

0,1326 
2.3539 
219555 
1,2416 

0,1561 
2,1604 
4,1774 
1,3879 

0,1771 
2,0170 
5,I103 
1,5639 

II 

0,1201 
2,8004 
0,7646 
1,0544 

0,1822 
2,3928 
2,7606 
1,2191 

0,2292 
2,1210 
4,4319 
1,4281 

0,2695 
1,9421 
5,5940 
1,7038 

0,3052 
1,8203 
6,3195 
2,0935 

III 

0,3115 
2,4598 
2,3871 
1,1842 

0,4611 
2,0025 
5,2061 
1,5878 

0,5778 
1.7805 
6:5208 
2,3098 

0,6778 
1,6646 
6,8545 
3,7531 

0,7655 
1,6033 
6,6416 

.6,4131 

IV 

0,9811 
1,9787 
5,3590 
1,6295 

1,4446 
1,6520 
6,8486 
4,0850 

0,0548 
2,9618 
0,1197 
1,0084 

0,0949 
2,7007 
1,1132 
1,0805 

0,1231 
2,4384 
2,3789 
1,1851 

0,1464 
2,2400 
3,5167 
1,3055 

0,1670 
2,0912 
4,4506 
1,4446 

0,0994 
2,8922 
0,3449 
1,0243 

0,1668 
2,5054 
1,9870 
1,1508 

0,2141 
2,2246 
3,5540 
1,3124 

0,2541 
2,0361 
4,7432 
1,5089 

0,2898 
1,9058 
5,5699 
1,7580 

tz=~/4 

I I I  

0,2709 
2,6493 
1,2228 
1,0893 

0,4284 
2,1693 
3,7580 
1,3461 

0,5499 
1,9237 
5,3171 
1,6950 

0,6561 
1,7885 
6,0791 
2,1822 

0,7552 
1,7119 
6,3204 
2,7959 

IV 

0,8844 
2,3179 
2,6748 
1,2208 

1,4071 
1~9086 
5,2120 
!,7047 

film width, which are, in turn uniquely determined by the Re and Fi values. These depend- 
ences are easily found on the basis of the results of [22]; data of numerical calculations 
of k, c, and q are given in Tables I and 2. 

The equation of convective diffusion is in dimensional variables 

oc oc = D i o d e  / 
o-C + o---T- " o---C + ; 

We i n t r o d u c e  t he  d i m e n s i o n l e s s  v a r i a b l e s :  

(5) 

In the variables 

%z D 
- -  12 UoX 

t ~ % x - -  ~ ' Y l v'y uo v~ c:.. 

(6) Eq. (5) i s  w r i t t e n  a s :  

On v On [ _~_ ho ( 8ep Oqo ) ]  On 

o--V - +  Y-dg  + - ~'~ + - f  - - d U  + vx o--;- oy 

- -  1 + T k Ox ] J oy~ + ~o. ax 2 + - - i - f -  2 + Ox OxOy 8x" )}. Oy 

(6) 

(7) 

We assume that along with the inequality ~=h0/i<<l the following inequality is valid, 
l/h0<<l. Based on the equations of continuity and kinematic conditions, valid on the free 
surface of the film, one has inside the thin diffusional boundary layer 

V~ ~ 
ah I ah av~ 
aT + v~ j ,~=a (~ - -  h) n=r, a[ a~ 

or, in the variables (6) with account of the definition of ~ in (i) we can write with the 
same accuracy 

- - : - - +  F ...... + - -  y. 
�9 Ox ~ Ox 

The quantity ~ is defined as follows: 

(8) 
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' ~ - ! l  , / ~ , l t l . /  

2 
~ - 5 /  / /  ? / 

J 5 /,7 ~ 2 I~e 

Fig. I. The relative Sherwood number as a function of physical and 
regime parameters; 1-6) experiment: I, 2) aqueous glycerine solu- 
tions, Fi ~ = 5.79; 7.74 [I0]; 3-6) water, Fi ~ ffi 11.34, data of 
[24, 25, 26, and 27], respectively; I-III) Eq. (24) for aqueous 
glycerine solutions and water, Fi ~ = 3.98; 7.74; 11.34; IV-VII) 
theory of [12, 13, 14, and 15], respectively, for water (the charac- 
teristic waves for V-VII are estimated from [22]); the dashed curve 
VII is the theory [15] for total mixing and restoration of diffusional 
layer. 

~. 3~u0 ~ 
l - -  V ' P - ' ~ '  Pe~ = 2 - - - ~  (9) 

Using (8) and (9), and neglecting higher-order terms, we obtain from (7) 

On +- F- On OF On 3 0 ~n ( 1 0 )  

Ot Ox #x Oy 2 o!?" 
The boundary conditions imposed on the solutions of (I0) are: 

n = O, y = O; n =  t ,  x =  O; n--+ l ,  y--+ oo. (11)  

Initial conditions are not used in the problems considered; rather, one uses, as always in 
similar situations, the periodicity condition. 

The validity conditions s << I and I/h o << I of the problem stated of convective diffusion 
in the form (I0), (11) are transformed to the form 

k uo ~, 
2"--~ (< 1, Pe~ >>Re[ (So >> Rex), Re~. = - -  (12) 

A solution of Eq. (i0) with boundary conditions (Ii) is sought in the form 

2 

n = ~ Arm(x, y)exp[imk(ct--x)], N_m =N~, (13) 
m=--2 

in agreement with (I), and automatically satisfying the required condition of periodicity. 
It follows from general considerations and from Eqs. (I)-(3) (as well as beingverifiedby the 
analysis below) that Nm N qm/2 Substituting (13) into (i0) and (II), and taking into ac- 
count the expression for F in (i) and the fact that ]~i] "~ ~q, !~F0[ ~[~g[~q, we obtain the 
following problem for finding the functions Nm(x, y) with m -- O, I, 2: 

No---O, y=O; No--l ,  x-----O; No.-.~ l, y-*-~; 

+ \ ox + i ky -~--u] v~ = - o ,  ' 
(15) 

N I = - 0 ,  y~---0; N I = 0 ,  X~---0; Nx--'>'0, y.-.+-oo; 
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2ib N, "k (1 4" "tF.) ON, ( ONo +2 ONo ) [ ON1 ON, ) 02N, 
Oy J ~ Ox Oy Oy ~- ' 

-= : r  I k, 
3 

N~--0 ,  y = 0 ; N 2  = 0 ,  x----0; N~--+0, y -~  oo. (16) 

The problems for the quantities N m with m = --I, --2 are obtained from (15) and (16), re- 
spectively, after applying the complex conjugate operation. It is convenient to use the 
asymptotic expansions 

Nm ~ q , , / 2 ~  Nmj (x, y; q), Nmi (x, y; q) .-~ qi 
i=o " ( 1 7 )  

The problems for the functions Nmj(X, y; q) are obtained after substituting (17) into (14)- 
(16) and separating different order terms in powers of ~q. Of primary interest is not the 
relative concentration field itself n(t, x, y), but the field obtained from it by time aver- 
aging: 

Y 

( n )  = lira ~ ndt ~ E Noj(x, y; q). (18) 
T ~  0 ]=0  

T h e r e f o r e ,  we r e s t r i c t  o u r s e l v e s  be low to  d e t e r m i n i n g  the  f u n c t i o n s  N00(x,  y ;  q) and N01(x,  y ;  
q) o n l y ,  which  a r e  r e q u i r e d  so a s  to  f i n d  ( n  > a c c u r a t e l y  up t o  t e r m s  of  o r d e r  q,  i n c l u s i v e .  

I n c l u d i n g  t e rms  o f  o r d e r  u n i t y ,  f rom (14) and (17) we o b t a i n  t h e  p rob lem f o r  N00 

ON~176 OZN~176 , Noo=O'(y  : 0), N o o :  I ( x=O,  y-->-~), 
ax a~  

with the self-similar solution 

(If  i' \ 4 / [  z~ \ y N, o: _ , - - - - = / d z ,  u =  , , = .  ( : 9 )  

It is seen from (14) that in determining N01 it is first necessary to find Nl0, for which we 
obtain from (15) and (17) the equation 

( ) ONlo -4:- ibN:o O 2 Nlo ~: ik - -  1 ~/ exp - - - -  
Ox " Oil 1,/st , 2x V'-x 4x 

and vanishing conditions of Nl0 at y = 0, x = 0, and y § ~. 
can be represented in the form [23] 

N ~ =  2 f ' ~  V x - - z  o 4 ( x - - z ) J  4 ( x - - z )  

f ( : , z ) = l / ~ , i k  2 ; )  exp ( - - - - ~ z ) .  

Transforming this expression, we obtain 

]/~b x 3'2 + i b x -  1 ) -  (1 - - e  -~b~') 

The solution of this problem 

exp [ - -  tJ-~2/. 
k 4x ] (20) 

The problem for N01 is obtained from (15) and (17). We have the equation 

- - -- --lRy'  Ox ' - - ikNl~ IF_~ Ox OY 2 Ox ~ ~ iky Oy Ox 

and t h e  v a n i s h i n g  c o n d i t i o n s  o f  N01 a t  y = 0,  x = 0, and y + ~. S u b s t i t u t i n g  t h e  e x p r e s s i o n  
f o r  N1 0 f rom (20 ) ,  we o b t a i n  a s o l u t i o n  in  t h e  form 

Nm : V"~ .e. '~ 2 ..... c ~ -t- x + 
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TABLE 3. Coefficients am in Eq. (25) for Small Reynolds Num- ~ 

bers; l-lV) Same as in Table i; the Approximate Error Does 
Not Exceed 5% 

o~=0 IV , ~ -= r /4  

I ] II I l l  I II  I I l l  IV 

1,1710 [ 1,1561 
0,2394 0,2277 
0,0512 0,0773 

1,1509 
0,2067 
0,0495 

1,0915 [ 1,1164 
0,0961 0.1738 
0,0117 0,0619 

1,0918 I 1,0805 0,1397 0,1217 
0,0559 0,0447 

1,0263 
0,0393 
0,0191 

TABLE 4. Coefficients a m in Eq. (25) for Moderate Reynolds 
Numbers: 1-IV) Same as in Table 2; the Approximation Error 
Does Not Exceed 5% 

= = 0  = = ~ / 4  

1 l i I  IV 

1,4836 
0,6123 
0,1253 
0,0121 
0.0109 

II 

2,0720 
1,4362 
0,4306 
0,1006 
0,0243 

III 

3,0890 
2,9071 
1,0329 
0,2512 
0,02t4 

1V 

3,1126 
2,8185 
0,9539 
0,2203 
0,0144 

I 

1,4004 
0,4948 
0,0854 
0,0028 
0,0076 

i l  

1.7272 
019137 
0,1957 
0,0255 
0,0063 

1,8166 
0,9735 
O, 1656 
0,0051 

--0,0058 

1,4806 
0,4821 
0,0391 

--0,0001 
--0,0005 

~ bx exp Y3' +___~__2 kb " 2 '  1 -sinbx-- b----f- ~ -t- x - -  

, ' ' t  + )  <l -v~x~,~ t 2 ---s + T  T - +  - - 
k bl ( + + + ) x s i n b x }  exp( ~2 ) .  (21) 

Using relations (19)-(21) and the standard procedures of [23], one can similarly solve the 
problems for the remaining functions Nmj (x, y; q). 

We introduce the time average of the local mass flow to the free surface of the film, 
taking into account that with the accuracy adopted the normal derivative can be replaced by 
the derivative with respect to ~. Using (18), 
W], we obtain after a simple calculation 

(19), and (21), as well as the equality W-i= 

;~ . = o = ~ t  * 2 ' t ' 0 + 3 - - 7 -  + l  ~1~I'+- 
2 q - - ( +  + bx ~')'~ [-- 2 sin bx + ~ ( 1  -- c~ bx)] IFI 1F*} " (22) 

This relation also makes it possible to determine the time average of the local Sherwood num- 
ber for different portions of the film. Of practical interest is the Sherwood number for a 
film of length L as a whole. From (22) we have approximately 

S h =  1 + - T - , V o + T  + x ,v, v t  , Dc, ]d~-  Dc, o 

Sho=( 6 u~ ) '/2 ( 6 L )l/'Ret,sSc,,~,I-I ( 3v~___ ( 2 3 )  
o = H g~os=/" 

Here we introduced the Sherwood number Sh0 for a laminar nonwavy film, corresponding to 
the well-known Higby theory of permeation, and we also used the relation between u0 and h0 
for such a film [22]. The approximate equality in (23) corresponds to retaining the dominant 
term of the integral, proportional to {L/~)J:2; the following (omitted) term is of order 
(LI~,)-tlL 

Relations (23) along with (2) or (3) fully determine the effect of wave formation in 
the film on convective mass exchange. From a practical point of view the most important 
terms are those for which Re>~-]0. In this case we have, with account of (3), 
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Sh c [ 2 ( c - - 1 ) z  ] (24) 
• = ~ =  1-}- - - -  1 q. 

Sho 3 2 c / 3 -  1 

C a l c u l a t e d  ~ v a l u e s  f o r  s t a t i o n a r y  wave  r e g i m e s  w i t h  s m a l l  and  m o d e r a t e  R e y n o l d s  num- 
b e r s  a r e  a l s o  g i v e n  i n  T a b l e s  1 and 2. The d e p e n d e n c e  o f  • o n  Re,  a s  g i v e n  ha ( 2 4 ) ,  i s  
illustrated in Fig. 1 for different Fi. Also given are the theoretical curves following 
from [12-15], as well as the experimental data in [i0, 24-27]. It is seen that the assumed 
theoretical dependences agree poorly with experiment (an exception is the curve following 
from the model with mixing and restoration of the diffusional layer). At the same time the 
theory suggested in the present study is in satisfactory agreement with experiment. For 
Re > 10-20 it worsens somewhat, which is related to the breakdown in the assumption of weak 
nonlinearity for large Re, an assumption essential for the analysis in [22]. 

The theoretical results on mass exchange of thin films with the surrounding gas, being 
lower in comparison with experiment, are also characteristic of models in other studies. 
The only exception known to the authors is [28], where a problem similar to (i0) and (Ii) 
was solved by the small parameter method, somewhat recalling the method of the present study, 
with fair agreement with the experimental results in [26]. However, no final equations of 
type (23) or (24) were obtained in [28]. Besides, to construct the theoretical dependences 
of the quantities characterizing the mass-exchange intensity on the physical and regime pa- 
rameters it was necessary to use in [28] independently obtained experimental data on the 
practically realizable amplitude of film waves. To a large extent this is related to the 
absence of a sufficiently complete hydrodynamic description of stationary, weakly nonlinear 
wave regimes. 

For applications it is usually desirable to have relatively simple approximate equa- 
tions for calculating Sh (or ~). It seems that for deriving such equations it is most con- 
venient to use the Chebyshev polynomials Tm(s) 

T~+I =- 2s T m -- Trn-1, To = 1, T1 = s, 

in whose terms these equations are 

M 

• ~ X amTm_1(s), s---- ARe + B, (25) 

A = 2 (Rm~ -- I)-~, B -- -- (Rm~.~ + I) (Rm~.~ -- I)-~. 

For small Reynolds numbers, when relations (2) and Table i are valid, we took Rma x = 
[Fil/ll], M = 3; for moderate Reynolds numbers (relations (3) and Table 2) we took Rma x = 
[6 Fii/11], M = 5. The values of the a m coefficients in these cases are given in Tables 3 

and 4. 

In conclusion, we firstly note that, as follows from (22), the increase in width of 
the diffusional layer along the film is accompanied by its oscillations, which do not vanish 
even after time averaging. Secondly, the method suggested of solving the problem of convec- 
tive diffusion, uniquely relating the mass-exchange characteristics with the characteristics 
of the wave flow regime, remains fully adequate if for any reason the theory in [22] is not 
valid (for example, in the presence of a tangential stress on the free surface due to a gas 
flow under conditions in which there exists a soluble or insoluble surface-active material). 
This method can also be applied without major difficulties to the analysis of more complex 
problems (for example, simultaneous heat and mass transfer with strong thermal sorption or 
desorption effects, and in the presence of evaporation or condensation on the free surface). 

NOTATION 

A, B, and ai, coefficients introduced in (25); b, parameter in (20); c, dimensionless 
phase velocity of waves and the dimensionless admixture concentration; c,, concentration far 
from the free surface; D, diffusion coefficient; F, function introduced in (i); H, parameter 
in (23); h and h0, film thickness in the wavy and nonwavy regimes; k, wave number; L, length 
of the mass exchange portion; l, characteristic width of the diffusion layer; M, order of 
the approximating polynomial; N i, functions introduced in (13); n, dimensionless concentra- 
tion; q, squared amplitude of the main harmonic of film thickness perturbation; Rma x, maxi- 
mum value of the Reynolds number in the approximation; Ti, Chebyshev polynomials; t, dimen- 
sionless time; u0, mean velocity in the nonwavy regime; v~, v~. v~. uv , longitudinal and trans- 
verse components of the dimensional and dimensionless velocities; x and y, dimensionless 
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coordinates; ~, angle between the planar sublayer of the film and the vertical; E, long-wave 
parameter; ~ and ~, dimensional coordinates; ~ , Sherwood number ratio for the wavy and non- 
wavy regimes; %, wavelength; ~, kinematic viscosity; p, liquid density; T, dimensional time; 
~, dimensionless wave amplitude; ~, dimensionless velocity disturbance; ~i, ~i, functions 
introduced in (i); Fi, film number; Re, Pe, Sc, and Sh, Reynolds, Peeler, Schmidt, and Sher- 
wood numbers, respectively; We, Weber number; the angular and square brackets denote, re- 
spectively, time averaging and the integral part of a number; and the asterisk above stands 
for complex conjugate. 
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STRUCTURAL PROPERTIES OF SURFACE LAYERS OF DISPERSED SYSTEMS BY THE METHOD 

OF ESTIMATING THE DEFORMATIONS OF THE CRYSTAL LATTICE OF THE SOLID PHASE 

AND THE DENSITY OF THE DISPERSED MEDIUM. I 

P. P. Olodovskii and L. A. Malkova UDC 541.182.3 

The distribution of the number of molecules of the dispersed medium in surface 
layers of the solid phase as a function of the concentration of water molecules, 
adsorbed on montmorillonite, is estimated. 

The effect of adsorbed water and organic compounds on the change in the parameters and 
volume of the unit crystalline cell of kaolinite is demonstrated in [i, 2]. Calculations 
of the deformation of the lattice are performed. 

In this work, the object of the investigation was the agrillaceous fraction of mont- 
morillonite, separated from natural Crimean kill. The technique and the procedure used in 
the measurements remained essentially the same. The method Of x-ray diffractometry using a 

DRON-2 wasused. 

Powder (3 g) was pressed into a special cell, whose reflecting surface was covered with 
beryllium foil, which was almost transparent to x rays. The moisture content of the sample 
was varied by drying in a vacuum dryer and by moistening with water in the dryer. Water 
vapor was added or removed through an opening in the cell, tightly covered with a threaded 
seal. The moisture content was determined by weighing. 

The organic compounds used consisted of nitrobenzene and toluene. For adsorption of 
molecules of these compounds on the powder, the sample in the cell with an established mois- 
ture content was placed into the system with the air removed beforehand and saturated with 
nitrobenzene or toluene vapors. 

A picture of the specimen in reflection was made in the discrete regime with Cu K s radi- 
ation~ The current in the tube was 16 mA, the voltage was 36 kV, and the gaps equal 0.5, i, 
and 0.25 mm. The vertical divergence of the Soller slits was I.~ . AnN i filter was used. 
The limit of the measurements was 1000 counts/sec, Rc = 5. The angle 20 for specific mois- 
ture contents of montmoril!onite was recorded on a digital printer from the maximum intens- 
ity of reflections with an error of 2@=0.00~ (with a step size of 0.01~ The reflections 
at (220), (222), and (400)of cerium dioxide, which was mixed with montmorillonite in a ratio 
of 1:20, were used as standards. 

The parameters and the volume of the crystal lattice were calculated from four reflec- 
tions of montmoril!onite (200), (005), (060), and (331) with the help of formulas for the 
monoclinic syngony and computer programs that we wrote in FORTRAN. 

Central Scientific-Research Institute for Complex Utilization of Water Resources, 
Minvodkhoza SSSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 46, No. 
pp. 746-754, May, 1984. Original article submitted February 3, 1983. 
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